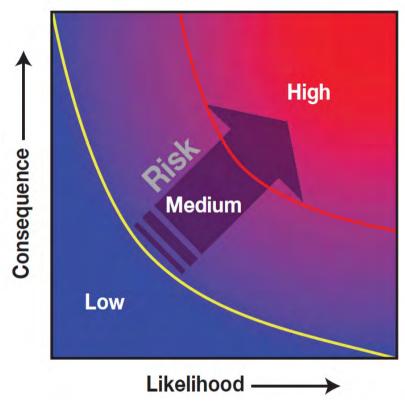
Introduction Climate Futures

Climate Futures approach to the provision of regional climate projection information

Jack Katzfey Acknowledgements: Penny Whetton, Kevin Hennessy, John Clarke, David Kent

www.csiro.au

Outline


- Climate projections and impact assessment
- Typical climate projections
- A new approach: climate futures
- Conclusions
- Activity

Climate Projections

- Climate projections are used in a variety of impact assessments
- The level of detail depends on the objectives of the decision-makers, e.g. less detail is required for general awareness-raising than designing a new road

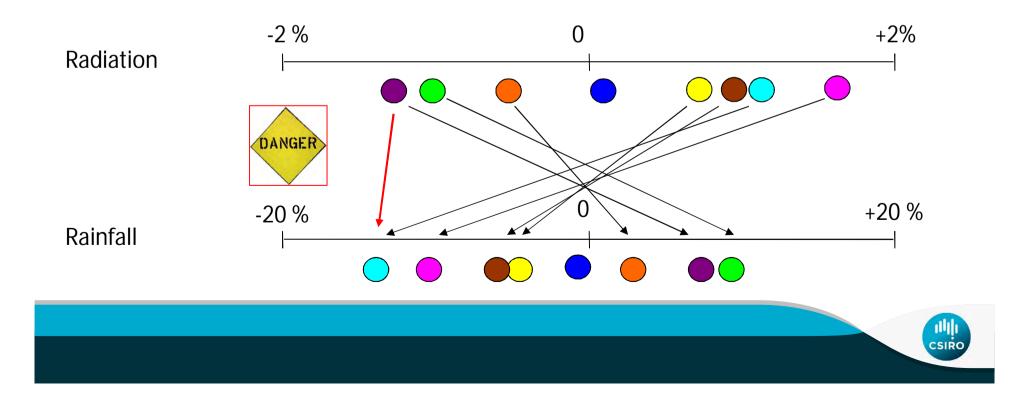
No "one size fits all", so climate projections need to be purpose-built

Risk Assessment

CSIRO & BoM (2007)

- Risk = consequence x likelihood
- A number of climate risk assessment and management frameworks exist
- Important to consider a range
 - Worst Case
 - Most Likely

Typical Climate Projections


- Projections are often given for individual climate variables, such as rainfall, for selected years and emissions scenarios
- Projections from different climate models tend to be mixed together and expressed as an average change with a range of uncertainty,

e.g. 2°C (1-3°C) temperature and 10% (-5%-15%) rainfall

Typical Climate Projections

Radiation:	(-1.2 to +1.8) %
Rainfall change:	(-15 to +10) %

Internally Consistent Projections

- Detailed risk assessments need projections with "internally consistent data" for multiple climate variables
- Projections based on individual climate models have internal consistency
- There will be up to 40 global climate models and 8 high resolution models available.
- Each simulation represents a plausible projection
- Too much information!
- How can we simplify communication and data delivery?

Individual Climate Model Issues

- Substantial differences between climate models in simulated future regional climate
- Rapid growth in the number of potentially relevant GCM (and downscaled) results, emission scenarios, etc
- Desire for simplicity: e.g. many users want to use a few as possible future climate scenarios in impact assessments

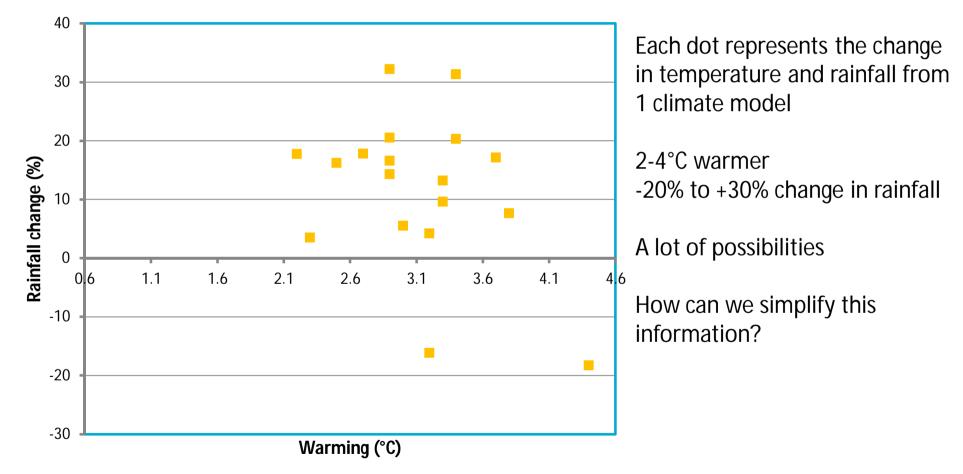
Much interest in model evaluation and selection

Model evaluation is not the answer

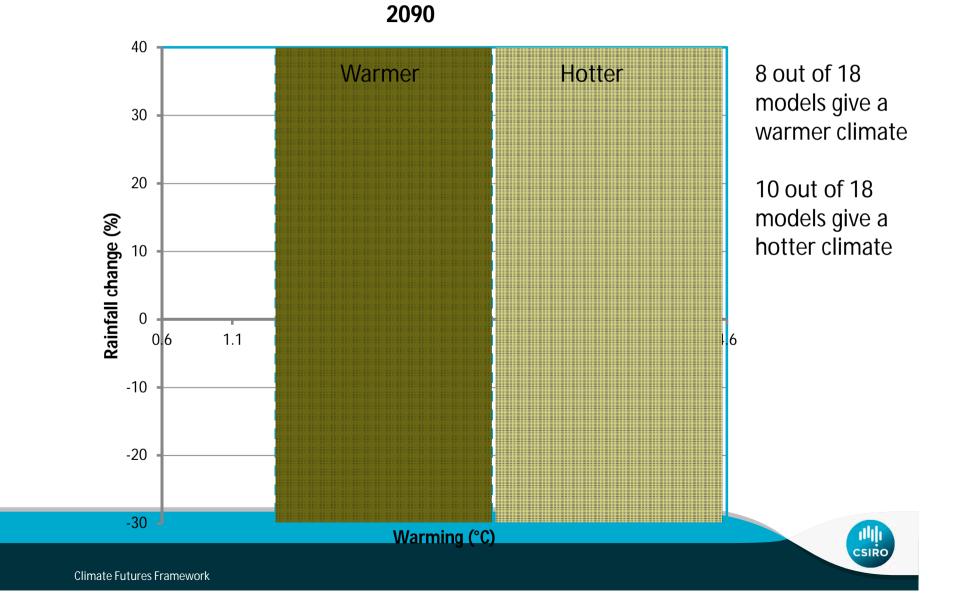
- The poorest models can be identified, but not the best
- Furthermore, less likely, but plausible, simulated future climates may be highly relevant in adaptation studies

"robust decision making" (Lempert & Schlesinger, 2000, Dessai 2009)

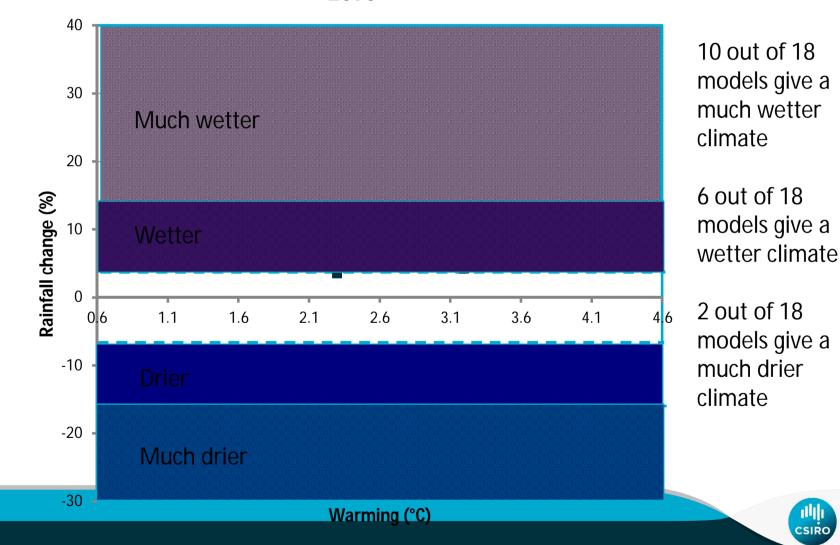
How else we can reduce complexity?


A new approach: Climate Futures

- Group the projections into a set of climate futures, e.g.
 - Warmer, wetter (9 models = 50%)
 - Warmer, drier (4 models = 22%)
 - Hotter, drier (2 models)
 - Hotter, much drier (1 model)
 - Warmer, much drier (1 models)
 - Hotter, wetter (1 models)
- Changes in temperature and rainfall are often strongly linked to changes in extreme weather events as well as humidity, sunshine and evaporation

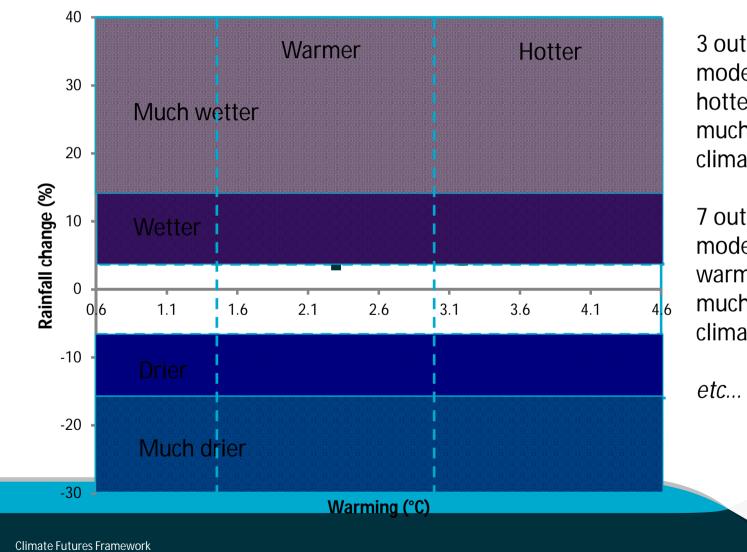

The Climate Futures Approach

2090



Classifying projected changes: towards 'Climate Futures'

Classifying projected changes: towards 'Climate Futures'


Climate Futures Framework

CSIRC

2090

Classifying projected changes: towards 'Climate Futures'

2090

3 out of 18 models give a hotter and much wetter climate

7 out of 18 models give a warmer and much wetter climate

CSIRO

The Climate Futures Approach

		Annual Surface Temperature (°C)				
		Slightly Warmer Warmer Hotter < 0.50			Much Hotter > 3.00	
	Much Drier < -15.00					
	Drier -15.00 to -5.00		Likelihood: 3 of 18 models (16%)			
Annual Rainfall (%)	Little Change -5.00 to 5.00	Likelihood: 2 of 18 models (11%)	Likelihood: 12 of 18 models (66%)			
	Wetter 5.00 to 15.00		Likelihood: 1 of 18 models (5%)			
	Much Wetter > 15.00					

A new approach: Climate Futures

- Scientists work with decision-makers to identify climate futures of most relevance to their risk assessment, e.g.
 - the biggest negative / positive impact
 - the least impact
 - the most likely future (or medium impact)
- Each climate future has an estimated likelihood
- Within in each climate future, select a representative climate model then use projections from that model in risk assessment – don't need to use all models

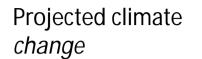
Climate Futures: Terminology

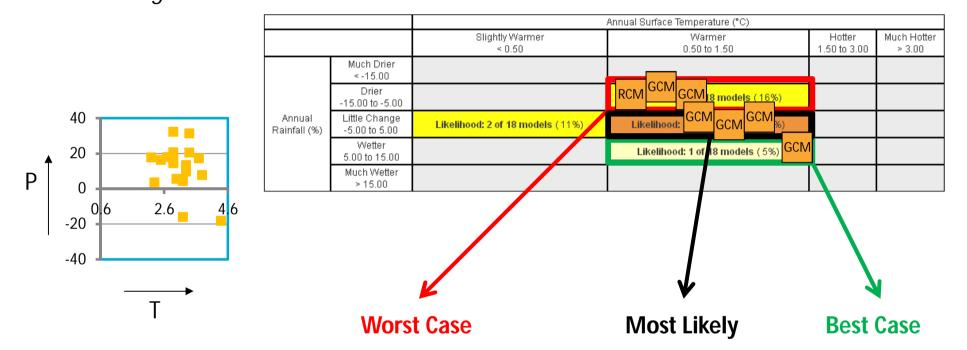
- **Most Likely** Climate Future: The climate future that contains the greatest number of models
- Best Case Climate Future: Decided with decision-makers – 'best' impact on the system being investigated
- Worst Case Climate Future: Decided with decision-makers – largest negative impact on the system being investigated

Projected climate *change*

 $P \uparrow 0 \\ -20 \\ -20 \\ -4$

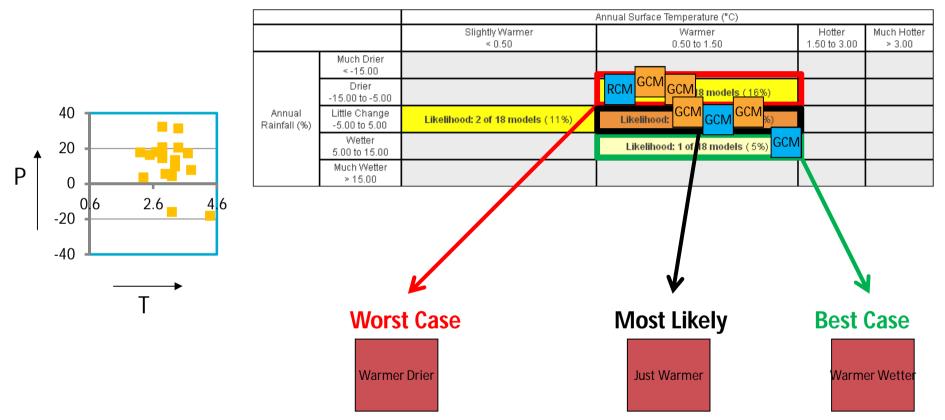
Т


		Annual Surface Temperature (°C)					
		Slightly Warmer < 0.50	Warmer 0.50 to 1.50	Hotter 1.50 to 3.00	Much Hotter > 3.00		
	Much Drier <-15.00						
	Drier -15.00 to -5.00		Likelihood: 3 of 18 models (16%)				
Annual Rainfall (%)	Little Change -5.00 to 5.00	Likelihood: 2 of 18 models (11%)	Likelihood: 12 of 18 models (66%)				
	Wetter 5.00 to 15.00		Likelihood: 1 of 18 models (5%)				
	Much Wetter > 15.00						



Projected climate change

Annual Surface Temperature (°C) Slightly Warmer < 0.50 Warmer Hotter Much Hotter 0.50 to 1.50 1.50 to 3.00 > 3.00 Much Drier < -15.00 Drier Likelihood: 3 of 18 models (16%) -15.00 to -5.00 40 Little Change Annual Likelihood: 2 of 18 models (11%) Likelihood: 12 of 18 models (66%) Rainfall (%) -5.00 to 5.00 Wetter 20 Likelihood: 1 of 18 models (5%) 5.00 to 15.00 Much Wetter Ρ > 15.00 0 2.6 4.6 0.6 -20 -40 Т **Most Likely Worst Case Best Case**



Projected climate

change

Conclusions

- Detailed risk assessments need projections from individual climate models to ensure internal consistency across multiple climate variables
- Using all climate models is very resource intensive
- Need to simplify communication and data delivery
- No "one size fits all", so climate projections need to be purpose-built

Activities

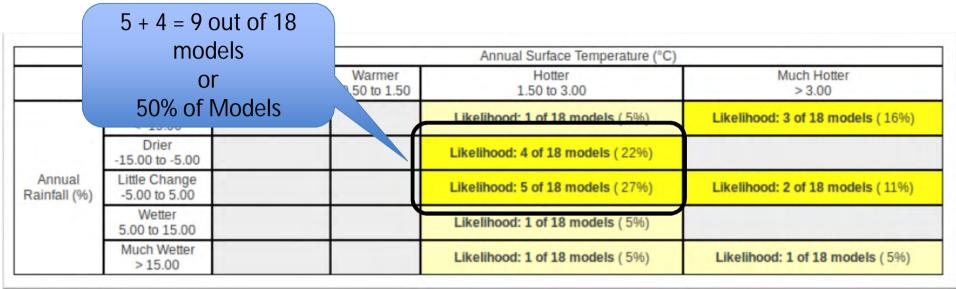
- •Activity 2.1
- Presentation
- •Activity 2.2
- Presentation
- •Activity 3
- •Design Your Own!

Terminology

Key Climate Futures

- Best Case Climate Future: Decided with decision-makers
 'best' impact on the system being investigated
- Worst Case Climate Future: Decided with decisionmakers – largest negative impact on the system being investigated
- **Most Likely** Climate Future: The climate future that contains the greatest number of models
 - ...but there are some rules...

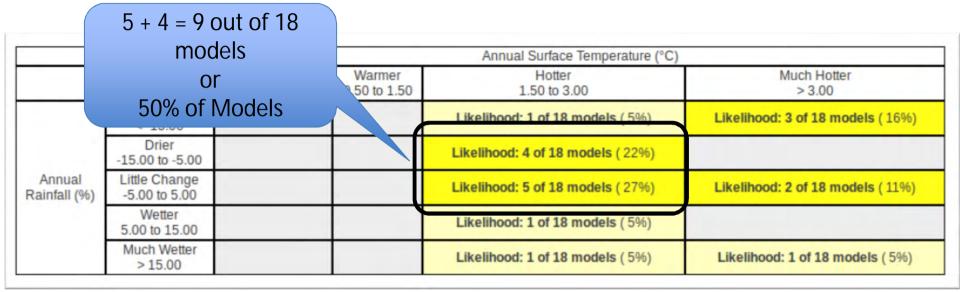
Most Likely climate future


- 1. Must contain at least 33% (¹/₃) of the total models
- 2. Must contain at least 10% more models than the next most likely climate future

		Annual Surface Temperature (°C)			
		Slightly Warmer < 0.50	Warmer 0.50 to 1.50	Hotter 1.50 to 3.00	Much Hotter > 3.00
	Much Drier <-15.00			Likelihood: 1 of 18 models (5%)	Likelihood: 3 of 18 models (16%)
	Drier -15.00 to -5.00			Likelihood: 4 of 18 models (22%)	
Annual Rainfall (%)	Little Change -5.00 to 5.00			Likelihood: 5 of 18 models (27%)	Likelihood: 2 of 18 models (11%)
	Wetter 5.00 to 15.00		4	Likelihood: 1 of 18 models (5%)	
	Much Wetter > 15.00			Likelihood: 1 of 18 models (5%)	Likelihood: 1 of 18 models (5%)

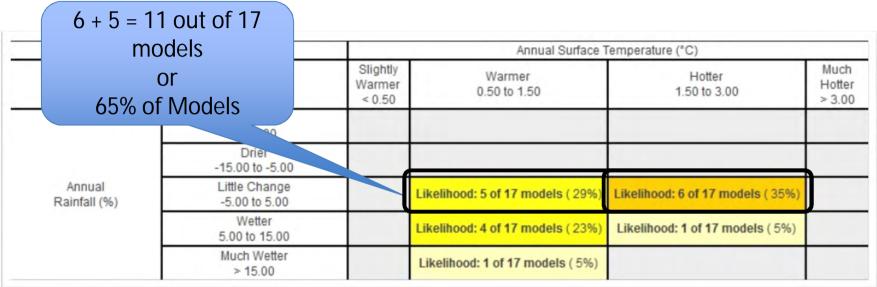
Most Likely climate future

• Rule 1: Must contain at least 33% (1/3) of the models



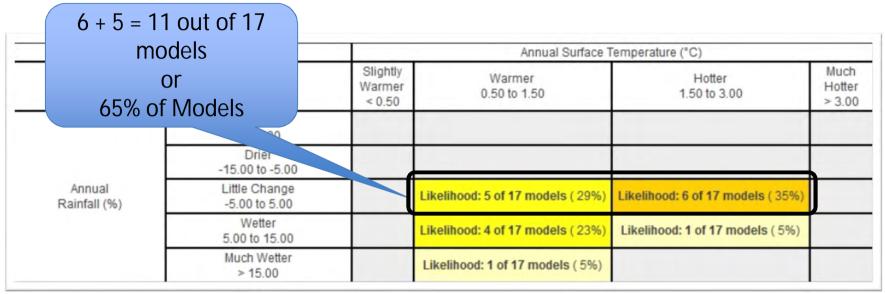
Most Likely climate future

- Rule 1: Must contain at least 33% (¹/₃) of the models
- 1. Add adjacent cell with next highest No of models
- 2. If total more than 33%
 - a) The *Most Likely* is the two combined



How would you describe this?

- "Hotter and Little Change to Drier"
- "9 of 18 models (50%)" = moderate likelihood



Most Likely climate future

- Rule 2: Must contain at least 10% more models
- Combined total must have 10+% more than next most likely future

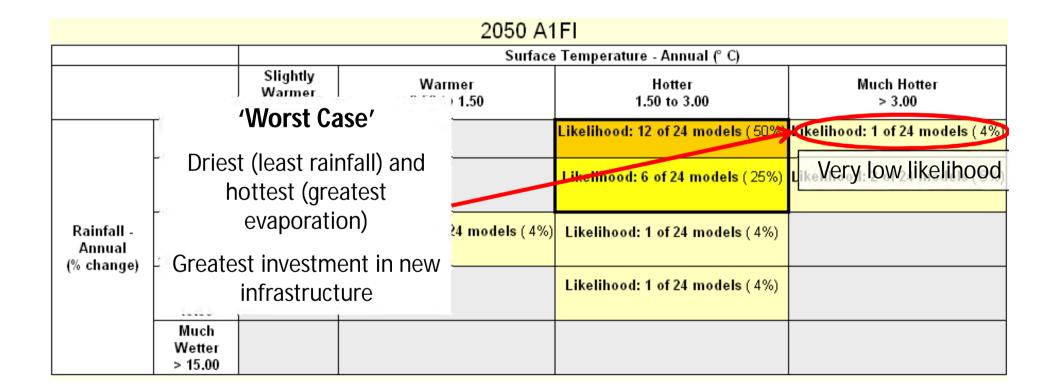
How would you describe this?

- "Warmer to Hotter and Little Change in rainfall"
- "11 of 17 models (65%)" = moderate likelihood

Activities

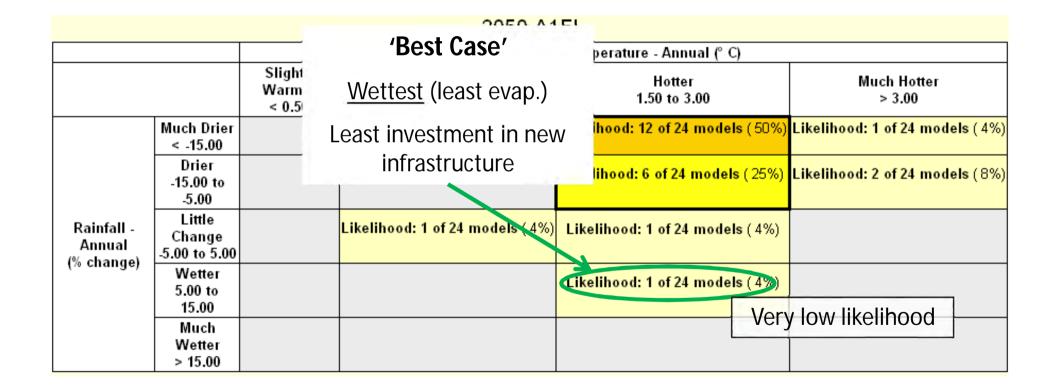
- •Activity 2.1
- Presentation
- •Activity 2.2 Water Availability
- Presentation
- •Activity 3
- •Design Your Own!

Hypothetical Case Study: Rainfall Capture and Storage

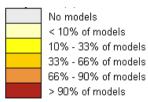

- Projections for impact assessment of rainfall capture and storage in 2050 under low and high emissions
- Key variables (in order of priority)
 - 1. Mean rainfall
 - 2. Evaporation
 - 3. Surface temperature
 - 4. Humidity

Hypothetical Case Study: Rainfall Capture,

2050 A1FI							
		Surface Temperature - Annual (° C)					
		Slightly Warmer < 0.50	Warmer 0.50 to 1.50	Hotter 1.50 to 3.00	Much Hotter > 3.00		
	Much Drier < -15.00		'Most Likely'	ikelihood: 12 of 24 models (50%)	Likelihood: 1 of 24 models (4%)		
	Drier -15.00 to -5.00			Likelihood: 6 of 24 models (25%)	Likelihood: 2 of 24 models (8%)		
Rainfall - Annual (% change)	Little Change -5.00 to 5.00		Likelihood: 1 of 24 models (4%)	Likelihood: 1 of 24 models (4%)			
(⁷⁶ change)	Wetter 5.00 to 15.00			Likelihood: 1 of 24 models (4%)			
	Much Wetter > 15.00						



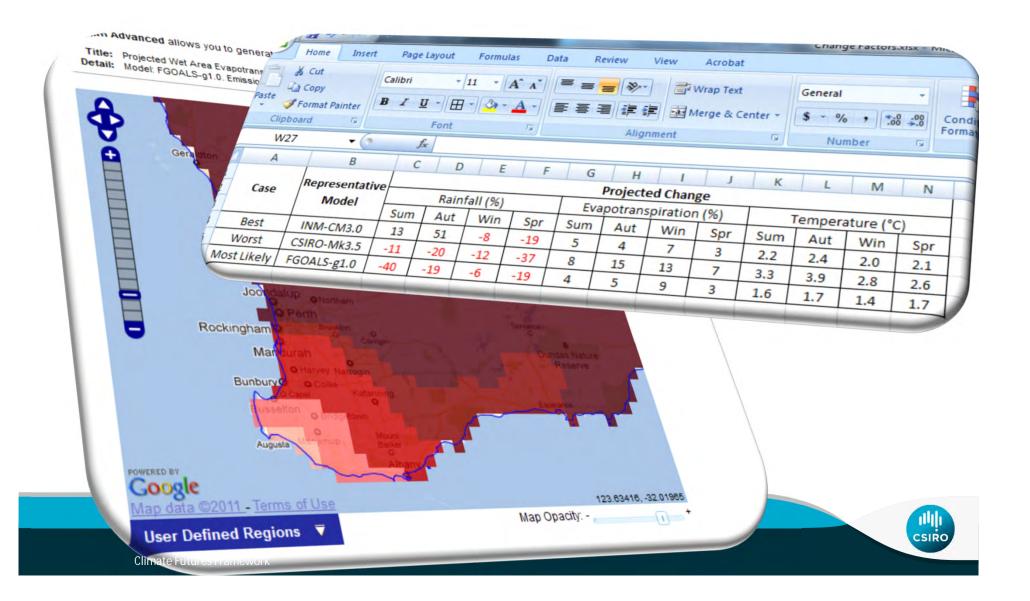
Hypothetical Case Study: Rainfall Capture,



Hypothetical Case Study: Rainfall Capture,

Hypothetical Case Study: Rainfall Capture

2050 A1FI							
		Surface Temperature - Annual (° C)					
		Slightly Warmer < 0.50	Warmer 0.50 to 1.50	Hotter 1.50 to 3.00	Much Hotter > 3.00		
	Much Drier < -15.00			Likelihood: 12 of 24 models (50%) IVIOST LIKELY	Likelihood: 1 of 24 models (4%) WORST CASE		
	Drier -15.00 to -5.00			Likelihood: 6 4 models (25%)	Likelihood: 2024 models (8%)		
Rainfall - Annual (% change)	Little Change -5.00 to 5.00		Likelihood: 1994 models (4%)	Likelihood: 24 models (4%)			
(² change)	Wetter 5.00 to 15.00			Likelihood: 1 of 24 models (4%) Best case			
	Much Wetter > 15.00						


Hypothetical Case Study: Rainfall Capture

Summary

Case	Climate Future	Likelihood	Representative Model
'Best'	Hotter & Wetter	Very Low	INM-CM3.0
'Worst'	Much Hotter & Much Drier	Very Low	CSIRO-Mk3.5
'Most Likely'	Hotter & Much Drier	Moderate	FGOALS-g1.0

Hypothetical Case Study: Rainfall Capture

Activity 3 – Water Availability

- 1. Select relevant climate futures
- 2. Select a model to represent each future

Case	Climate Future	Likelihood	Representative Model
'Best'			
'Worst'			
'Most Likely'			

Thank you !

CMAR/CAF www.csiro.au

