Bias Correction

Asst.Prof.Dr.Jerasorn Santisirisombooon Asst.Prof.Dr.Waranyu Wongseree Ramkhamhaeng University

Definition of bias

The international definition of bias according to WMO is the correspondence between a mean forecast and mean observation averaged over a certain domain and time.

- Imperfect model representations of atmospheric physics
- Models are parameterized and evaluated on finite-length time series which may not cover the full range of atmospheric dynamics.
- The reference data sets (the "truth") used for model parameterization and validation are inadequate.
- Incorrect initialization of the model or errors in the parameterization chain (GCMs).
- Incorrect boundaries provided by reanalyses or GCMs or inconsistencies between the physics of GCMs and RCMs (RCMs).

Bias Correction

advantages

- Provide realistic climate data
- Compare observed and simulated impacts during historical reference period
- Smooth transition into the future.

shortcomings

- Quality of the observations database limits the quality of the correction.
- It is assumed that the bias behaviour of the model does not change with time.
- Statistical bias correction often destroys the physical consistency of the different climate variables

Bias Correction

Methods to calibrate model simulations to ensure their statistical properties are similar to those of the corresponding observed values.

Bias correction is applied on each grid cell and for each time period separately to account for potential temporal and spatial structure in the biases.

Bias Correction Example

The mean bias of present simulation (green) from present observation (blue) is calculated and added to the future simulation [left diagram]. So the downscaled future simulation (yellow) has zero mean bias to the present observation [right diagram].

Original Distribution

Histogram of the original temperature distribution.

Corrected Distribution

The corrected data distribution using the Delta Correction Method.

Bias Correction Method

- Delta method (Additive method)
- Scaling method (Multiplicative method)
- Linear regression

Delta method

The formula for bias corrected data in projection period (x_{cor}) is

$$x_{cor} = a + bx_{pro}$$

where $a = \overline{x}_{obs} - \overline{x}_{sim}$ and b = 1

 x_{pro} is the simulated data in projection period

- \overline{x}_{sim} is the means of simulated data in baseline period
- \overline{x}_{obs} is the means of observed data in baseline period

This method is preferable not to apply it to bounded variables (e.g. precipitation, wind speed, etc.) because values out of range could be obtained.

Scaling method

The formula for bias corrected data in projection period (x_{cor}) is

$$x_{cor} = a + bx_{pro}$$

where a = 0 and $b = \overline{x}_{obs} / \overline{x}_{sim}$

 x_{pro} is the simulated data in projection period

- \overline{x}_{sim} is the means of simulated data in baseline period
- \overline{x}_{obs} is the means of observed data in baseline period

The scaling method is preferably applicable to variables with a lower bound (e.g. precipitation, because it also preserves the frequency).

Linear regression

The formula for bias corrected data in projection period (x_{cor}) is $x_{cor} = a + bx_{pro}$

where a, b are obtained from least square of this equation

$$x_{obs} = a + bx_{sim}$$

 x_{pro} is the simulated data in projection period x_{sim} is the simulated data in baseline period x_{obs} is the observed data in baseline period

A relative measure of the quality of the forecasting system compared to the benchmark or reference forecast

EXCEL Linear Regression Function

- EXCEL has a function that can be applied to analyze the (simple and multiple) linear relation of data base on least square method
- It is a kind of "ARRAY FORMULA"
- Syntax

LINEST(known_y's,known_x's,const,stats)

- Output array : 5 x (m+1) where m is the number of independent variables.
- Press Control+Shift+Enter

2	A	В	С	D	E	F	G			
1	m	m _{n-1}	1999	m ₂	m ₁	b				
2	sen	se _{n-1}		se ₂	se ₁	seb				
3	r ²	sev								
4	F	df								
5	SSreg	SSresid								
6										
7	SSresid	= sum(y -)	$(est)^2$: the residu						
8	SS _{total}	= sum(y - y	$(_{avg})^2$: the total						
9	SSreg	= ss _{total} - ss _{resid}		: the regre						
10										
11	$r^2 = ss_{reg}/ss_{total}$: the coeff							
12			1							
13	The smal	ler ss _{resid} is, c	ompared	with the ss _t	_{otal} , the larg	er the value	of r ² ,			
14	which indicate of how well the equation resulting form the regression									
15	analysis explains the relationship among the variables									
16										
17	df	= n - k - 1		: degree o	f freedom					
18	n			: number o						
19	k			: number of independent variables						

1.1	Name Box	B	С	D	E	F	G	Н	I	J	К
21	F and df in LINEST output can be used to assess the likelihood of a higher F value occuring by chance. F										
22	can be compared with cirtical value in published F-distribution tables of EXCEL's FDIST can be used to										
23	calculated the probability of a larger F value occuring by chance.										
24											
25	Probability	= FDIST(F	,v1,v2)	: probability	that an F	value this h	high occurre	ed by chan	ce		
26	v1	= n - df -1			_						
27	v2	= df			_						
28			15 . 1								
29	If FDIST(F,v1,v2) < alfa then we can conclude that F value this high is not occurred by chance										
30					-		_				
31	Fcritical	= FINV(alf	fa,v1,v2)	: critical val	ue of F						
32											
33	If F > F _{critical} then we can conclued that F value this high is not occurred by chance.										
34											
35	Another hypothesis test will determine whetehr each slope coefficienti is useful in estimating the dependent varia										iable (y).
36				Sec. 27 Sec. 1							
37	sen			: standard error of independent variable n							
38	t,	= m_/se_		: t-observe value of independent variable n							
39											
40	If the absolute value of t, is sufficient high, it can be concluded that the slope coefficient mp is usefuel in estimating v.										
41									1	1	······
47	tur	-TINV(alf	a df)	• t critical t	wo tailed						
42	Scritical	- TIAN (dill	a,ary	. c critical, t							
14	If the she	aluta valua	oft is and	ator than t	n in	important	upriphle wh	on actima	ting v		
44	If the absolute value of t _n is greater than t _{critical} , h is an important variable when estimating y.										